Bases and Dimension

Linear Algebra
Department of Computer Engineering
Sharif University of Technology
Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Introduction

Basis

Dimension

Finite Dimensional Subspace

Introduction

Type equation here.

	\#Room	Size_part1	Size_part2	Size_part3	Size_part4	Size	Age	Floor	Is_near_park
Home \#1									
Home \#2									
Home \#3									
Home \#N									

Basis

- A set of n linearly independent n-vectors is called a basis.
- A basis is the combination of span and independence: A set of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ forms a basis for some subspace of \mathbb{R}^{n} if it
- (1) spans that subspace
- (2) is an independent set of vectors.

Definition
Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ in V is a basis for H if

1. \mathcal{B} is linearly independent set, and
2. The subspace spanned by \mathcal{B} coincides with H; that is,

$$
H=\operatorname{Span}\left\{b_{1}, \ldots, b_{n}\right\}
$$

Example

Which are unique?
\square Express a vector in terms of any particular basis

- Bases for \mathbb{R}^{2}
\square Bases with unit length for \mathbb{R}^{2}

Be careful: A vector space can have many bases that look very different from each other!

Example (Basis)

\square Standard bases for $P_{n}(\mathbb{R})$?
\square Are $(1-x),(1+x), x^{2}$ basis for $P_{2}(\mathbb{R})$?

Dimension

- The dimensionality of a vector is the number of coordinate axes in which that vector exists.
- If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional. Otherwise it is infinite-dimensional.
- The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted $\operatorname{dim}(\mathrm{V})$.

Theorem

Let V be a vector space which is spanned by a finite independent set of vectors $x_{1}, x_{2}, \ldots, x_{m}$. Then any independent set of vectors in V is finite and contains no more than m elements.

Proof

Conclusion

Every basis of V is finite and contains no more than m elements.

Independent \leq spanning

Conclusion

In a finite-dimensional space,

$$
\begin{aligned}
& \text { the length of every } \\
& \text { linearly independent list } \\
& \text { of vectors }
\end{aligned} \leq \begin{aligned}
& \text { the length of every } \\
& \text { spanning list of } \\
& \text { vectors }
\end{aligned}
$$

Bases and finite dimension

Theorem

If V is a finite-dimensional vector space, then any two bases of V has the same (finite) number of elements.

Proof

Basis and finite dimension
The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted as $\operatorname{dim}(\mathrm{V})$.

Theorem **

Let V be a vector space which is spanned by a finite set of vectors $x_{1}, x_{2}, \ldots, x_{m}$.
Then any independent set of vectors in V is finite and contains no more than m elements.

Theorem

Let V be a vector space with a basis B of size m. Then
a) Any set of more than m vectors in V must be linearly dependent, and
b) Any set of fewer than m vectors cannot span V.

Definition

A vector space V is called $\cdot \cdots$
a) finite-dimensional if it has a finite basis, and its dimension, denoted by $\operatorname{dim}(V)$, is the number of vectors in one of its bases.
b) infinite-dimensional if it has no finite basis, and we say that $\operatorname{dim}(V)=\infty$.

Note

Dimension of subspace $\{0\}$?

Example

Let's compute the dimension of some vector spaces that we' ve been working with.

Vector space	Basis	Dimension
F^{n}		
P^{p}		
$M_{m, n}$		
P (all polynomials)		
F (functions)		
C (continues functions)		

Finite Dimensional Subspace

Basis of subspace

Theorem

If W is a subspace of a finite-dimensional vector space V, every linearly independent subset of W is finite and is part of a (finite) basis for W.

Proof

Theorem (Lemma)

Let S be a linearly independent subset of a vector space V. Suppose u is a vector in V which is not in the subspace spanned by S. Then the set obtained by adjoining u to S is linearly independent.

Proof

Corollary

A subspace is called a proper subspace if it's not the entire space, so $R 2$ is the only subspace of $R 2$ which is not a proper subspace

If W is a proper subspace of a finite-dimensional vector space V, then W is finite-dimensional and $\operatorname{dim}(W)<\operatorname{dim}(V)$

Proof

Corollary

In a finite-dimensional vector space V, every non-empty linearly independent set of vectors is part of basis.

Basis of sum of subspaces

Theorem

If W_{1} and W_{2} are finite-dimensional subspaces of a vector space V, the $W_{1}+W_{2}$ is a finite-dimensional and
$\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)=\operatorname{dim}\left(W_{1} \cap W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right)$

Proof

Which vector spaces have bases?

Theorem

Let V be a finite dimensional vector space and let W be a subspace of V. Then W has a finite basis.

Theorem

Let V be a vector space which has a finite spanning set. Then V has a finite basis.

Note

Let V be a finite dimensional vector space over field F. Below are some properties of bases:

1. Any linearly independent list can be extended to a basis (a maximal linearly independent list is spanning).
2. Any spanning list contains a basis (a minimal spanning list is linearly independent).
3. Any linearly independent list of length $\operatorname{dim} V$ is a basis.
4. Any spanning list of length $\operatorname{dim} V$ is a basis.
\square We will learn about change of basis after linear transformation lecture!

Coordinates

Definition

If V is a finite-dimensional vector space, as ordered basis for V is a finite sequence of vectors which is linearly independent and spaces V.

Be careful: The order in which the basis vectors appear in B affects the order of the entries in the coordinate vector. This is kind of janky (technically, sets don't care about order), but everyone just sort of accepts it.

Coordinate Systems

- The main reason for selecting a basis for a subspace H; instead of merely a spanning set, is that each vector in H can be written in only one way as a linear combination of the basis vectors.

Note

Suppose the set $\mathcal{B}=\left\{\boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{\boldsymbol{P}}\right\}$ is a basis for a subspace H. For each x in H, the coordinates of \boldsymbol{x} relative to the basis \boldsymbol{B} are the weights c_{1}, \ldots, c_{P} such that $\mathrm{x}=c_{1} b_{1}+\cdots+c_{P} b_{p}$, and the vector in \mathbb{R}^{p}

$$
[x]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{P}
\end{array}\right]
$$

is called the coordinate vector of \boldsymbol{x} (relative to \mathcal{B}) or the \mathcal{B}-coordinate vector of x.

Coordinate Systems

Example

Coordinate vector of $p(x)=4-x+3 x^{2}$ respect to basis $\left\{1, x, x^{2}\right\}$

- The familiar Cartesian plane (left) has orthogonal coordinate axes. However, axes in linear algebra are not constrained to be orthogonal (right), and non-orthogonal axes can be advantageous.

Barycentric Coordinates

Theorem

Let set $S=\left\{v_{1}, \ldots, v_{k}\right\}$ be an affinely independent set in \mathbb{R}^{n}. Then each \mathbf{p} in aff S has a unique representation as an affine combination of v_{1}, \ldots, v_{k}. That is, for each \mathbf{p} there exists a unique set of scalers c_{1}, \ldots, c_{k} such that

$$
\mathbf{p}=c_{1} v_{1}+\cdots+c_{k} v_{k} \quad \text { and } \quad c_{1}+\cdots+c_{k}=1
$$

Note

$$
\left[\begin{array}{l}
\mathbf{p} \\
1
\end{array}\right]=c_{1}\left[\begin{array}{c}
v_{1} \\
1
\end{array}\right]+\cdots+c_{k}\left[\begin{array}{c}
v_{k} \\
1
\end{array}\right]
$$

Involving the homogeneous forms of the points. Row reduction of the augmented matrix $\left[\begin{array}{llll}\widetilde{v_{1}} & \ldots & \widetilde{v_{k}} & \widetilde{\mathbf{p}}\end{array}\right]$ produces the Barycentric coordinates of \mathbf{p}.

Barycentric Coordinates

Definition

Let set $S=\left\{v_{1}, \ldots, v_{k}\right\}$ be an affinely independent set. Then for each point \mathbf{p} in aff S, the coefficients c_{1}, \ldots, c_{k} in the unique representation

$$
\mathbf{p}=c_{1} v_{1}+\cdots+c_{k} v_{k} \quad \text { and } \quad c_{1}+\cdots+c_{k}=1
$$

of \mathbf{p} are called the Barycentric (or, sometimes affine) coordinates of \mathbf{p}

Barycentric Coordinates

Example

Let $a=\left[\begin{array}{l}1 \\ 7\end{array}\right], b=\left[\begin{array}{l}3 \\ 0\end{array}\right], c=\left[\begin{array}{l}9 \\ 3\end{array}\right]$, and $p=\left[\begin{array}{l}5 \\ 3\end{array}\right]$. Find the Barycentric
Coordinates of p determined by the affinely independent set
$\{a, b, c\}$.

Note

$S=\left\{v_{1}, \ldots, v_{k}\right\}$ are affinely independent, if \& only if $\left[\begin{array}{c}v_{1} \\ 1\end{array}\right] \ldots\left[\begin{array}{c}v_{k} \\ 1\end{array}\right]$ are linear independent.

- Page 97 LINEAR ALGEBRA: Theory, Intuition, Code
- Page 213: David Cherney,
- Page 54: Linear Algebra and Optimization for Machine Learning

