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CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani



Basis

O A set of n linearly independent n—vectors is called a basis.

O A basis is the combination of span and independence: A set of
vectors {vy, ..., v, } forms a basis for some subspace g_f R™ if it

Q (1) spans that subspace

QO (2)is an independent set of vectors.

/e.

b The standard basis for R*.
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Definition
Let H be a subspace of a vector space V. An indexed set of vectors B = {b,, ..., b, } inV is
a basis for H if

1. Bis linearly independent set, and

2. The subspace spanned by B coincides with H; that is,

H = Span {b4, ..., b,,}

Example

Which are unique?
U Express a vector in terms of any particular basis
0 Bases for R?
0 Bases with unit length for R?
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Vector Space of Polynomials

Be careful: A vector space can have many bases that
look very different from each other!

Example (Basis)

O Standard bases for B,(R)?
Q Are (1 —x), (1 + x), x? basis for P,(R)?
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Dimensions

O The dimensionality of a vector is the number of coordinate axes in

which that vector exists.

a If a vector space is spanned by a finite number of vectors, it is said

to be finite—dimensional. Otherwise it is infinite—dimensional.

O The number of vectors in a basis for a finite—dimensional vector

space V is called the dimension of V and denoted dim(V).
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Theorem **

Let V be a vector space which is spanned by a finite independent set of vectors

X1,X3, ..., Xm. Then any independent set of vectors in V is finite and contains no

more than m elements.

Proof

Conclusion

Every basis of V is finite and contains no more than m elements.
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Independent £ spanning

Conclusion

In a finite—dimensional space,

the length of every the length of every
linearly independent list < spanning list of
of vectors vectors
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Bases and finite dimension

Theorem

If VV is a finite—dimensional vector space, then any two bases of VV has the same

(finite) number of elements.

Proof
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Basis and finite dimension

The number of vectors in a basis for a finite—dimensional vector space V is called

the dimension of V and denoted as dim(V).

Theorem **k
Let V be a vector space which is spanned by a finite set of vectors x4, x5, ..., X,

Then any independent set of vectors in V is finite and contains no more than m

elements. ‘

Theorem

Let IV be a vector space with a basis B of size m. Then
a) Any set of more than m vectors in V must be linearly dependent, and

b) Any set of fewer than m vectors cannot span V.
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Dimensions

Definition

A vector space I/ is called---

a) finite—dimensional if it has a finite basis, and its dimension, denoted by

dim(V), is the number of vectors in one of its bases.

b) infinite—dimensional if it has no finite basis, and we say that dim(V) = .

Note

Dimension of subspace {0}?
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Dimensions

Example

Let’ s compute the dimension of some vector spaces that we’ ve been working
with.

. Vectorspacs  Basis  Dimension
Fn
pp
My PR — Note!
P (all polynomials)
F (functions)

C (continues functions)
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Finite Dimensional Subspace
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Basis of subspace

Theorem

If W is a subspace of a finite—dimensional vector space V, every linearly

independent subset of W is finite and is part of a (finite) basis for W.

Proof

Theorem (Lemma)
Let S be a linearly independent subset of a vector space I/. Suppose u is a

vector in IV which is not in the subspace spanned by S. Then the set obtained by

adjoining u to S is linearly independent.
Proof
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Basis of subspace

C ” A subspace is called a proper subspace if it's not the entire space, so
oroliary R2 is the only subspace of R2 which is not a proper subspace

If W is a proper subspace of a finite—dimensional vector space V, then W is

finite—dimensional and dim(IW) < dim(V)

Proof

Corollary

In a finite—dimensional vector space V, every non—empty linearly independent set

of vectors is part of basis.
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Basis of sum of subspaces

Theorem
If W; and W, are finite—dimensional subspaces of a vector space V, the W, + W,

is a finite—dimensional and

Proof
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Which vector spaces have bases?

Theorem

Let IV be a finite dimensional vector space and let W be a subspace of V. Then

W has a finite basis.

Theorem

Let V be a vector space which has a finite spanning set. Then V has a finite

basis.
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Dimensionality and Properties of Bases

Note

Let VV be a finite dimensional vector space over field F. Below are some
properties of bases:

1. Any linearly independent list can be extended to a basis (a maximal
linearly independent list is spanning).

2. Any spanning list contains a basis (a minimal spanning list is linearly
independent).

3. Any linearly independent list of length dim V is a basis.
4. Any spanning list of length dim IV is a basis.

d
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Ordered basis

Definition

If V is a finite—dimensional vector space, as ordered basis for VV is a
finite sequence of vectors which is linearly independent and spaces V.

Be careful: The order in which the basis vectors appear in B affects the order of the
entries in the coordinate vector. This is kind of janky (technically, sets don’ t care about
order), but everyone just sort of accepts it.
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Coordinate Systems

O The main reason for selecting a basis for a subspace H; instead of merely a

spanning set, is that each vector in H can be written in only one way as a linear

combination of the basis vectors.

Note

Suppose the set B = {b4, ..., bp} is a basis for a subspace H. For each x in H, the
coordinates of x relative to the basis B are the weights ¢y, ..., cp such that
X = ¢1b; + - + cpby, and the vector in R?
€1
[x]z= [ 5

Cp

is called the coordinate vector of x (relative to B) or the B—coordinate vector of x.
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Coordinate Systems

Example

Coordinate vector of p(x) = 4 — x + 3x? respect to basis {1, x, x*}
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Coordinate axes

o

/

o The familiar Cartesian plane (left) has orthogonal coordinate
axes. However, axes in linear algebra are not constrained to be
orthogonal (right), and non—orthogonal axes can be

advantageous.
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Barycentric Coordinates

Theorem

Let set S = {v4, ..., vx} be an affinely independent set in R™. Then each p in aff S has a unique
representation as an affine combination of v, ..., v;. That is, for each p there exists a unique set of
scalers ¢4, ..., ¢j such that

p=cvy+--+cv, and ci1t++c, =1

Note

1l = el ey

Involving the homogeneous forms of the points. Row reduction of the augmented matrix [V] ... Ty P]

produces the Barycentric coordinates of p.
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Barycentric Coordinates

Definition
Let set S = {v4, ..., v} } be an affinely independent set. Then for each point p in

aff S, the coefficients ¢y, ..., ¢; in the unique representation

p=cv;+--+cv, and 1+ -+ =1

of p are called the Barycentric (or, sometimes affine) coordinates of p
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Barycentric Coordinates

Example

|1 I E |9 15 : :
Let a = [7] b = [0] ,C = [3] ,and p = [3] . Find the Barycentric
Coordinates of p determined by the affinely independent set

{a,b,c}.

Note

S = {v4, ..., vy} are affinely independent, if & only if [1711] [vlk]are linear independent.
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